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Abstract The concept of a superposition is a revolutionary novelty introduced by Quantum
Mechanics. If a system may be in any one of two pure states x and y, we must consider
that it may also be in any one of many superpositions of x and y. An in-depth analysis of
superpositions is proposed, in which states are represented by one-dimensional subspaces,
not by unit vectors as in Dirac’s notation. Superpositions must be considered when one
cannot distinguish between possible paths, i.e., histories, leading to the current state of the
system. In such a case the resulting state is some compound of the states that result from each
of the possible paths. States can be compounded, i.e., superposed in such a way only if they
are not orthogonal. Since different classical states are orthogonal, the claim implies no non-
trivial superpositions can be observed in classical systems. The parameter that defines such
compounds is a proportion defining the mix of the different states entering the compound.
Two quantities, p and θ , both geometrical in nature, relate one-dimensional subspaces in
complex Hilbert spaces: the first one is a measure of proximity relating two rays, the second
one is an angle relating three rays. The properties of superpositions with respect to those
two quantities are studied. The algebraic properties of the operation of superposition are
very different from those that govern linear combination of vectors.

Keywords Superpositions in quantum mechanics · Geometry of Hilbert spaces · Quantum
measurements · Measurement algebras · Quantum logic

1 Introduction and Previous Work

During the elaboration of [1] John von Neumann wrote to Garret Birkhoff: “I would like to
make a confession which may seem immoral: I do not believe absolutely in Hilbert space
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any more. After all Hilbert-space (as far as quantum-mechanical things are concerned) was
obtained by generalizing Euclidean space, footing on the principle of “conserving the va-
lidity of all formal rules”. This is very clear, if you consider the axiomatic-geometric de-
finition of Hilbert-space, where one simply takes Weyl’s axioms for a unitary-Euclidean
space, drops the condition on the existence of a finite linear basis, and replaces it by a min-
imum of topological assumptions (completeness + separability). Thus Hilbert-space is the
straightforward generalization of Euclidean space, if one considers the vectors as the essen-
tial notions. Now we begin to believe that it is not the vectors which matter but the lattice of
all linear (closed) subspaces. Because:

1. The vectors ought to represent the physical states, but they do it redundantly, up to a
complex factor only.

2. And besides the states are merely a derived notion, the primitive (phenomenologically
given) notion being the qualities, which correspond to the linear closed subspaces” (see
[5], p. 59, letter dated November 13, Wednesday, 1935).

The goal of this work is to pursue von Neumann’s program of describing Quantum Logic
in terms of closed subspaces and without vectors one step further. This work presents two
original features:

• it takes a logical approach to Quantum Physics, where states and propositions take the
main roles, and

• while it assumes the formalism of Hilbert spaces that fits Quantum Physics, it tries the
utmost to use only notions, such as states, propositions, projections, orthogonality and so
on, that have a meaning, albeit mostly trivial, in Classical Physics. Special care will be
taken to ensure that the quantic principles proposed hold classically.

2 Quantum Logic

One may say that Logic is the study of the relation between states of the world and propo-
sitions used to talk about those states. Quantum logic must therefore be the study of the
relation between quantum states and quantum propositions. The accepted view is that both
quantum states and quantum propositions should be represented by closed subspaces of
a Hilbert space. Quantum states are one-dimensional subspaces. Quantum logic is there-
fore the study of the relation between one-dimensional subspaces and arbitrary closed sub-
spaces. One obvious topic for Quantum logic is therefore the study of the properties of pro-
jections in Hilbert spaces: a one-dimensional subspace projects onto a one-dimensional or
zero-dimensional subspace of any closed subspace. Projections are also central to Quantum
Physics since they correspond to the change brought about by the measurement of a physical
property. Previous works [4] and [3] provided a first study of some of the properties of such
projections: they dealt only with qualitative properties. The present paper inaugurates the
quantitative study of the projective geometry of complex Hilbert spaces.

The purpose of the exercise is to shed light on the notion of measurement in Quantum
Physics by developing a geometry of Hilbert spaces whose entities are physically mean-
ingful: states of physical systems and measurements on physical systems. Our goal can be
understood in considering the history of geometry. Euclidean plane geometry was the start-
ing point. Its elements are points and lines. Mathematical developments (due to Descartes
in particular) enabled a treatment of geometry in the vector space Rn. A new definition of
geometry, abstracting from the vector space structure and returning to the basic notions of
points and lines, enabled the development of non-Euclidean geometries. For Hilbert spaces,
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historically the algebraic presentation came first. The purpose of this paper is to extract from
the algebraic presentation a leaner presentation similar in spirit to Euclid’s geometry. Our
basic entities are one-dimensional subspaces and, more generally, closed subspaces and not
vectors.

In an obvious way, two elements (vectors) of a Hilbert space define a number, their inner
product. We are looking for numbers that characterize relations between subspaces, not
vectors. This paper proposes to associate a real number with any pair of one-dimensional
subspaces x, y: p(x, y) and, by extension, to any pair of a one-dimensional subspace and a
closed subspace α: p(x,α). This number is always in the interval [0,1] and behaves in many
ways like the probability that the proposition α is found true when it is tested for in state x,
in line with the probabilistic interpretation of Quantum Physics. It satisfies further properties
that are more difficult to interpret and that characterize the linear dependence structure and
the structure of projections.

Another numerical quantity, an angle, θ , is defined by any triple of one-dimensional
subspaces. It is interpreted as the source of the interference occurring between alternative
paths a system could take. This paper is devoted to the study of those aspects of the geometry
of Hilbert spaces related to the numbers p and θ . The study of those M-algebras (see [4])
that admit quantities satisfying the properties of p, θ and superpositions is left for further
study.

3 Background and Notations

We assume a Hilbert space H on the field C of complex numbers is given. The complex
conjugate of a complex number c is c. For any complex number c, |c| represents its modulus,
which is a nonnegative real number. For any complex number c different from 0, arg(c)

represents its complex argument: c = |c|ei arg(c). Elements of H will typically be: �u, �v . . . .
The zero vector is denoted by �0. The inner product of �u and �v is 〈�u, �v〉 . The inner product
is linear in its first argument and conjugate-linear in its second argument. Two vectors �u
and �v are perpendicular, written �u ⊥ �v, iff 〈�u, �v〉 = 0. The norm of �u is ‖�u‖. A unit vector
is a vector of norm 1. We shall use the notation 〈�u, �v〉 > 0 to denote the fact that the inner
product is a strictly positive real number.

The set of all closed subspaces of H will be denote by M . The elements of M should
be thought of representing propositions, or, results of physical measurements. Greek letters
from the beginning of the alphabet will be used to denote elements of M . The reader may
think of a typical element of M , α as meaning the spin in the z-direction is nonnegative. Note
that propositions represent measurements with a specified result or a set of possible results:
such as measuring the value 1/2 for the spin in the z-direction or measuring a nonnegative
value for this spin. To every α ∈ M one may associate its orthogonal complement, which
will be denoted ¬α. The proposition ¬α is interpreted as the measurement that measures
the quantity measured by α but provides a value that is not in the set specified by α. If α

claims that the spin in the z-direction is nonnegative, ¬α measures the spin along the same
direction but finds it negative. Two specific propositions are worth mentioning: falsehood,
0 is the null subspace {�0} and truth, 1 is the whole space H. Any closed subspace α of H
defines the projection of H onto α. For any �u ∈ H its projection on α will be denoted α(�u).
The relation between physical measurements and projections will be explained after we
discuss states.

Among the closed subspaces of H particular attention will be paid to one-dimensional
subspaces. The set of one-dimensional subspaces of H is denoted X and the elements of X
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are typically letters from the end of the alphabet: x, y and so on. As mentioned just above:
X ⊆ M . Elements of X will be called states. A one-dimensional subspace x represents a
possible (pure) state of the physical system. Think of the state in which the spin in the z-
direction is 1/2, for example. We assume that states are propositions. The fact that X ⊆ M

reflects the situation in which every pure state has an associated measurement that charac-
terizes it: one may measure the spin in the z-direction and one of the possible values is 1/2.
The proposition “the spin in the z-direction is nonnegative” is not a state.

Since a proposition α ∈ M is a closed subspace of H, for any x ∈ X, either x ⊆ α or α

contains no vector of x except the zero vector. Any proposition is the union of the states
it includes and any proposition can be seen as the set of all the states it includes. We shall
indeed prefer the notation x ∈ α to x ⊆ α.

Note that if �v ∈ x ∈ X and �u ⊥ �v then �u ⊥ �w for every �w ∈ x. We denote such a situation
by �u ⊥ x. If every �u ∈ α is orthogonal to x we say that x ⊥ α. If every x ∈ X, x ∈ α is orthog-
onal to β we say that α ⊥ β . The image of any x ∈ X by any (projection) α ∈ M is either a
one-dimensional subspace y ∈ X or the zero-dimensional subspace. This second possibility
occurs exactly when x is orthogonal to α. We shall denote by α(x) the one-dimensional or
zero-dimensional subspace that is the projection of x onto α. Note that α(x) = x iff x ∈ α.
We write α(x) = 0 to denote the case α(x) is zero-dimensional, i.e., the case x ⊥ α. The
projection of the zero-dimensional subspace on any α is the zero-dimensional subspace and
we shall extend the action of α by setting α(0) = 0.

In Quantum Physics measurements may change the state of the system. The state ob-
tained when measuring α in state x is precisely α(x), the projection of x on the subspace
α. If x is orthogonal to α, then the measurement α is impossible in state x: this happens
precisely when the quantity measured by α has, in x, a well-defined value that is not in the
set specified by α. Equivalently, this happens precisely when x is in the subspace ¬α, or
(¬α)(x) = x.

4 Classical Physics

The notions described in Sect. 3 have been given a meaning grounded in the Hilbert space
formalism of Quantum Mechanics. This seems to preclude their application to Classical Me-
chanics, since, classically, states are not rays in a Hilbert space. Nevertheless, the common
wisdom is that Quantum Mechanics should apply everywhere and that Classical Mechanics
should be a limiting case of Quantum Mechanics. Indeed, both Classical Mechanics and
Quantum Mechanics can be studied in structures that abstract from the concepts of Sect. 3,
preserving the properties of states and measurements. A full treatment is left for future work,
but the following remark explains the main feature of classical systems.

Classically, measurements do not change the state of a system, therefore if a state x is not
orthogonal to a proposition α, we have α(x) = x, expressing the fact that either x possesses
the property α or it possesses its negation ¬α. We have:

Principle of Classical Physics Any two different states are orthogonal.

5 The Reciprocity Principle

Before proceeding to the analysis of the notion of a superposition which is the crux of this
paper, we need a simple remark. It will be presented as a principle, to stress the physical
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meaning of a fact that is woven so deep in the familiar linear structure of Hilbert spaces
that we tend not to reflect on it anymore. If the measurement ¬x acting on state y and on
state z produces the same state, then x, y and z must sit in the same plane, and therefore the
measurement ¬y must produce the same state when acting on x and on z.

Reciprocity Principle Let x, y, z ∈ X, be pairwise different.

Then (¬x)(y) = (¬x)(z) ⇒ (¬y)(z) = (¬y)(x).

The Reciprocity Principle suggests the following definition.

Definition 1 We shall say that states x, y and z are coplanar, written coplanar(x, y, z) iff
either two out of the three are equal, or they are pairwise different and (¬x)(y) = (¬x)(z).

The Reciprocity Principle says that coplanarity is a property of the set {x, y, z}, i.e., for
any permutation x ′, y ′, z′ of x, y, z coplanar(x ′, y ′, z′) is equivalent to coplanar(x, y, z).

The Reciprocity Principle is experimentally testable: if the no answer to a test x gives
the same state when performed on y and on z, the no answer on a test y will give the same
answer on z and x.

In Hilbert space, indeed, if y and z have the same projection on the subspace orthogonal
to x, call it x ′, then all four one-dimensional subspaces: x, x ′, y and z are in the same two-
dimensional subspace, call it α, and therefore the projections of z and x on the subspace
orthogonal to y are both the one-dimensional subspace of α orthogonal to y.

In Classical Physics, the Reciprocity Principle holds trivially, since its assumptions are
never satisfied. Indeed if x �= y, we have (¬x)(y) = y, and similarly (¬x)(z) = z and there-
fore the assumption (¬x)(y) = (¬x)(z) implies y = z, contrary to assumption.

6 Superpositions: Conceptual Analysis

The concept of a superposition is a revolutionary novelty introduced by Quantum Mechan-
ics. If a system may be in any one of two pure states x and y, we must consider that it may
also be in any one of many superpositions of x and y. This paper is devoted to an in-depth
analysis of superpositions.

The following remark has resulted in a vast literature: the revolutionary character of
quantic superpositions is the consequence of the fact no such superpositions have to be con-
sidered, or may be seen in classical systems. In Schrödinger’s colorful thought experiment:
the cat is either dead or alive, but nobody has evidence of a superposition of a dead and
a live cat. This seems to contradict the principle exposed in Sect. 4, of the universality of
Quantum Mechanics. If everything in the universe is quantic and any two quantic states can
be superposed, then any two classical states, such as a live and a dead cat, can be super-
posed. Many explanations have been proposed and this is not the place for a survey. Most
explanations accept the existence of superpositions of classical states and explain why such
superpositions are not seen. The analysis of the superposition concept to be developed be-
low proposes a radically different explanation. It is not the case, it is claimed here, that, in
Quantum Mechanics, any two states can be superposed: on the contrary, no superposition
of orthogonal states can ever be considered. Since different classical states are orthogonal,
the only superpositions of classical states that can ever occur are trivial: superpositions of a
state with itself. Trivial superpositions are indeed observed and unproblematic.
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To avoid any misunderstanding: if |+〉 and |−〉 are orthogonal states, the state
1/

√
2(|+〉 + |−〉) is a perfectly legal state, but it is not a superposition of |+〉 and |−〉.

It is equal, as will be clear, to many different superpositions of non-orthogonal states (that
are themselves linear combinations of the states |+〉 and |−〉. The reader will be well advised
not to think linear combination when superposition is read.

To explain the surprising position above, let us, first, reflect on the nature of superpo-
sitions and their origin: what are they and how do they come into consideration, without
trying to describe formally such superpositions. Then, we shall propose a formalization and
an algebraic structure.

The reader should notice that the linear combination of vectors of a Hilbert space pro-
vides a formal operation, not a conceptual analysis, and also that, since vectors do not rep-
resent states, the linear combination of vectors cannot offer a proper formalization for the
superpositions of states. Even though we announced above that orthogonal states cannot
be superposed, it is clear that orthogonal unit vectors can be combined linearly to form
unit vectors. This should convince the reader that we shall not formalize superposition as a
straightforward linear combination.

6.1 Nature and Origin

Superpositions must be considered to describe systems about which all we know is that
they are the result of one of a number of different possible paths (or histories), i.e., if we
have no way of knowing which history indeed took place. In such a case, we must consider
that the system is in some state that is a superposition, i.e., a compound of the states that
are the produced by each of the possible paths. The term compound is used here where,
chemically-speaking, the term mixture may be more appropriate because this last term is
used in Quantum Mechanics with a different meaning.

If one knows which path has been taken, or one could discover which path has been taken,
then one must consider that the system is in the state that results from the path taken, and
one must use probability theory to describe one’s ignorance about the state of the system. If
one does not know and cannot know which path has been taken, then one must consider that
the system is in some specific superposition of the states resulting from the different possi-
ble paths. This is a general principle: if one cannot know which path has been taken, then
those paths interfere and therefore the system cannot be described using only probability
theory, but must be described by a state that is a compound, i.e., a superposition of the states
resulting from the different interfering paths. This general principle holds also in Classical
Physics, as will be seen in Sect. 6.3. The way in which the different paths may interfere,
i.e., the parameters that characterize the different possible superpositions will be described
in Sect. 6.2.

The paradigmatic example of such a situation is a the two-slits experiment in which a
particle travels through one of two slits and one does not know which.

6.2 Parameters

To leave things simple we shall consider only the superpositions of two states, without loss
of generality as long as we consider only a finite number of possible paths. Generalizing to
path integrals is beyond the scope of this paper. Suppose therefore that we must deal with
a system that may result from two different paths. If path p1 was taken, the system is in
state y; if path p2 was taken, the system is in state z. If one cannot know which path was
taken, one must consider that the system is in a state that is some superposition of the two
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states y and z. Many such superpositions are possible and the purpose of this section is to
describe the experimental parameters that influence the superposition to be used. In Sect. 6.3,
the question of whether we can know which path was taken will be given an unequivocal
answer.

In a situation in which any one of two paths may have been taken, the experimental
conditions determine the respective weights to be given to each one of the possible paths.
These relative weights may be interpreted as describing the a-priori probability of each one
of the paths, or the relative proportions in which each of the paths is taken. A superposition
of y and z obtained as the result of the interference between the two paths p1 and p2 will
therefore be characterized by a single parameter r ∈ [0,1]. The proper value to be chosen for
this parameter is a function of the experimental setup. The reader should notice that, even
though we shall describe such a superposition of states x and y as some sort of compound
or mixture of x and y, a superposition is a pure state, not what is known in QM as a mixed
state.

The parameter r that characterizes a superposition describes, in a sense, the respective
proportions (ratios) of y and z present in the superposition, though this intuitive analogy
should not be taken too seriously. The parameter r is therefore a real number: 0 ≤ r ≤ 1 that
describes the weight of y relative to z in the superposition.

In the two-slits experiment, where y represents the state resulting from the electron mov-
ing through the upper slit and z the state resulting from the electron moving through the
lower slit, the parameter r will depend on the respective widths of the two slits and the
respective distance of those slits to the origin.

The superpositions we shall consider are therefore of the form super(y, z, r) for states
y, z ∈ X and real number 0 ≤ r ≤ 1. The telling notation ry + (1 − r)z will be used in place
of the more austere super(y, z, r), but the reader is warned that + does not mean addition,
juxtaposition does not mean multiplication and some of the properties one would expect
from our notation do not hold. In particular the composition of superpositions does not
possess the properties suggested by the notation.

6.3 Conditions

Section 6.2 indicated that superpositions of states y and z should be considered only if there
is no way to know which one of the paths p1 or p2 leading to y and z respectively has been
traveled. It is time to reflect on this condition.

If the states y and z are orthogonal: y ⊥ z, then there is a way to find out for sure which
of the two paths has been traveled: perform on the resulting state a measurement testing
whether the state is y or not: a test y, (¬y). If path p1 has been traveled, the result will be
a yes for sure since the state is y. If path p2 has been traveled, the result, for sure, will be
a no since the state is z, orthogonal to y. Similarly, we could have tested for z or for any
proposition satisfied by one of the states y or z and orthogonal to the other one. We see
that no superposition of orthogonal states can ever be defined. This is stark contrast with the
linear combination of vectors in a Hilbert space.

Further reflection shows that if the states y and z are not orthogonal, one can never find
out for sure which of the paths p1 or p2 has been traveled. Indeed the only situation in
which one could find out would be to test for some proposition α satisfied, for sure, by one
of the two states y or z and not satisfied, for sure, by the other state. In other terms, a closed
subspace α containing one of y or z and orthogonal to the other one. But this implies y ⊥ z.
We see that:
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Principle of Superposition The superposition ry + (1 − r)z is defined if and only if y �⊥ z.

In Sect. 7 a definition of superpositions in the formalism of Hilbert spaces will be pro-
vided, but, first, we shall discuss two general principles, and justify them by considerations
independent of the Hilbert space formalism.

6.4 Trivial Superpositions

Let us consider, first, the superpositions of a state y with itself: ry + (1 − r)y. By the Prin-
ciple of Classical Physics, these are the only superpositions possible in classical physics.

Evidence from both classical and quantum physics shows that such superpositions are
trivial:

Principle of Triviality ∀y ∈ X, ∀r ∈ [0,1], ry + (1 − r)y = y.

Having disposed of the cases y ⊥ z and y = z, let us study the generic case of superposi-
tions.

6.5 Principle of Coplanarity

A superposition is coplanar with its components. Assume y �⊥ z.

Principle of Coplanarity ∀r ∈ [0,1], coplanar(ry + (1 − r)z, y, z).

This principle can be justified in the following way. The superposition x = ry + (1 − r)z

results from our inability to know which of p1, resulting in y or p2, resulting in z has been
traveled. Measuring ¬y on x shows that the path p1 has not been traveled and therefore p2

has been traveled and the current state (¬y)(x) is in fact (¬y)(z).
We shall propose a precise definition of superpositions such as ry + (1 − r)z for y �⊥ z

in Sect. 7. Then, in Sects. 8.1 and 8.2, we shall define fundamental geometric quantities in
terms of which the properties of superpositions will be studied in Sect. 9.

7 Definition of Superpositions

We shall now present the definition of the superposition ry + (1 − r)z. Our definition is
taken from the everyday practice of physicists.

Definition 2 For any r ∈ [0,1], for any y, z ∈ X such that y �⊥ z, we shall define ry +
(1 − r)z in the following way.

Choose some arbitrary unit vector �v in y. Since y �⊥ z, there is a unique unit vector �w of
z such that 〈�v, �w〉 > 0. Define, now:

�u = √
r �v + √

1 − r �w.1 (1)

Note that �u �= �0: if y = z then �v = �w and
√

r + √
1 − r > 0. Otherwise �v and �w are lin-

early independent and at least one of
√

r or
√

1 − r is strictly positive. We may now define
ry + (1 − r)z to be the one-dimensional subspace generated by �u.

1Added in proof: another possible choice is �u = r �v + (1 − r) �w.
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Note that the vector �u above is not a unit vector. Definition 2 squares well with the Dirac
notation and the way it is used in everyday physics. If y and z are to be compounded in
equal parts (r = 1/2) then 1/2y + 1/2z is defined by the vector 1/

√
2(�v + �w), which is a

unit vector in case y ⊥ z. Notice, though, that the case y and w are orthogonal is a case we
do not allow.

The following is expected on general considerations and easily shown to follow from
Definition 2.

Lemma 1 For any y, z ∈ X such that y �⊥ z, we have

1. 1y + 0z = y, and
2. for any r ∈ [0,1] ry + (1 − r)z = (1 − r)z + ry.

We shall now define two geometrical quantities that will help us understand the structure
of superpositions.

8 The Geometry of Hilbert Spaces

First, we shall define a geometrical property of two states.

8.1 Quantities from Euclidean Geometry

8.1.1 The Quantity a(x, y)

We shall now define the first geometric quantity we wish to consider. When considering the
geometry of Hilbert spaces it is useful to begin by reflecting on the geometry of Euclidean
spaces, about which we know much more and have a much better intuition. Consider two
lines, i.e, one-dimensional linear (not affine) subspaces, in Rn. The only invariant charac-
terizing their relation is their angle. Two lines define a plane and four angles. Those four
angles are two pairs of equal angles. Therefore only two quantities are defined by two lines.
Moreover those two angles add up to π , therefore there is essentially only one quantity de-
fined. One can take as the fundamental quantity either the acute or the obtuse angle. Let us
consider the acute angle as the quantity of interest. Two lines in Euclidean space define an
angle ϕ in the interval [0,π/2]. Equivalently, they define a real number in the interval [0,1],
the value of cos(ϕ).

The same quantity may be defined in Hilbert spaces. Consider two states x, y ∈ X. We
are trying to associate a numerical quantity to this pair of states. The most natural thing to
consider is the inner product of two vectors contained in x and y respectively. It is very
natural to choose two unit vectors �u ∈ x and �v ∈ y and consider the inner product 〈�u, �v〉.
This will not do since the quantity depends on the choice of the unit vectors �u and �v and we
are looking for a quantity that depends only on x and y. The inner product depends on the
choice of the unit vectors, but its modulus does not. Consider therefore the quantity

a(x, y)
def= |〈�u, �v〉|

for arbitrary unit vectors �u and �v of x and y respectively. Any unit vector �u′ of x has the
form: �u′ = eiθ �u and any �v′ of y has the form: �v′ = eiϕ �v. Therefore 〈�u′, �v′〉 = ei(θ−ϕ)〈�u, �v〉,
and |〈�u′, �v′| |= |〈�u, �v〉|.

The following is easily proved.
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Lemma 2 For any x, y ∈ X:

1. a(x, y) is a real number of the interval [0,1],
2. a(x, y) = 1 iff x = y,
3. a(x, y) = 0 iff x ⊥ y,
4. a(y, x) = a(x, y).

8.1.2 Similarity: p

It turns out that the square of the quantity a(x, y), akin to the cos2 of an angle has even more
remarkable properties.

Definition 3 Given any states x, y ∈ X, we shall define their similarity p(x, y) by

p(x, y) = a2(x, y).

The quantity p will be called similarity because it measures how similar, i.e., close, are its
arguments x and y. Its physical interpretation is straightforward: p(x, y) is the probability
that, when, on state x, one tests whether y is the case, one gets a positive answer. With
probability 1−p(x, y) one gets the answer that y is not the case. This physical interpretation
is the reason p = a2 and not a has been chosen as the quantity of reference. Note that p can
be directly obtained experimentally. Below, we shall extend the definition of p to measure
the similarity between any state x ∈ X and any proposition α ∈ M , i.e., the degree to which
state x satisfies proposition α.

A straightforward result on Hilbert spaces will be recalled now.

Lemma 3 Let �u, �v ∈ H. Assume �v is a unit vector and �v ∈ x ∈ X. Then the projection x(�u)

of �u on x is 〈�u, �v〉�v.

Proof �u − 〈�u, �v〉�v is indeed orthogonal to �v and therefore to x. �

First properties of p are described in the following.

Lemma 4 For any x, y ∈ X:

1. p(x, y) is a real number in the interval [0,1],
2. p(x, y) = 1 iff x = y,
3. p(x, y) = 0 iff x ⊥ y,
4. p(y, x) = p(x, y),
5. for any unit vector �u ∈ x, p(x, y) = 〈�u,y(�u)〉 where y(�u) is the projection of �u on y,
6. for any unit vector �u ∈ x, p(x, y) = ‖y(�u)‖2.

Proof For 5, note that for any unit vector �v of y, we have, by Lemma 3, y(�u) = 〈�u, �v〉�v, and
therefore 〈�u,y(�u)〉 = 〈�u, �v〉〈�u, �v〉 = |〈�u, �v〉|2. Note that this implies that the inner product
〈�u,y(�u)〉 is a real number. For 6, note that projections are Hermitian and idempotent, and
therefore 〈y(�u), y(�u)〉 = 〈�u,y(y(�u))〉 = 〈�u,y(�u)〉. �

The next result is central. It shows that, for any given proposition α, the projection on α

is determined by the p-structure.
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Theorem 1 For any proposition α ∈ M and any states x, y ∈ X, if x �⊥ α and y ∈ α then
p(x, y) = p(x,α(x))p(α(x), y).

Proof Let �u be a unit vector of x. Since y ∈ α, the projection of any vector on y can be
obtained by projecting the vector first on α and then projecting the result on y. In particular,
y(�u) = y(α(�u)). Therefore

p(x, y) = ‖y(�u)‖2 = ‖y(α(�u))‖2/‖α(�u))‖2/ : ×‖α(�u)‖2.

Let �v = α(�u)/‖α(�u‖. Notice that �v is a unit vector of α(x) and therefore

p(x, y) = ‖�v‖2 × ‖α(�u)‖2 = p(α(x), y) × p(x,α(x))

since α(�u) is the projection of �u on α(x), and by Lemma 4. �

Corollary 1 For any proposition α ∈ M and any state x ∈ X, if x �⊥ α then α(x) is the
unique state y of α on which the value of p(x, y) is maximal.

In short, there is a unique state of α that is most similar to x, this is x’s projection on α.

Proof By Theorem 1, since p(α(x), y) ≤ 1 by Lemma 4, p(x, y) ≤ p(x,α(x)) for any
y ∈ α.

For uniqueness, suppose y ∈ α and p(x, y) = p(x,α(x)). By Theorem 1, p(x,α(x)) =
p(x,α(x))p(α(x), y). Since x is not orthogonal to α, p(x,α(x)) > 0 and therefore
p(α(x), y) = 1 and α(x) = y. �

It is now only natural to extend the definition of p to an arbitrary proposition as second
argument. For any x ∈ X and α ∈ M , we define p(x,α) in the following way:

• p(x,α) = 0 if x ⊥ α, and
• p(x,α) = p(x,α(x)) otherwise.

The following is known, in Physics, as Born’s rule. The quantity p(x,α) is the probability
of measuring the property α in state x.

Lemma 5 For any state x ∈ X and any proposition α ∈ M , if �u �= �0 ∈ x, p(x,α) =
‖α(�u)‖2/‖�u‖2.

The proof is obvious. The following is an obvious consequence of Corollary 1.

Corollary 2 For any state x and any proposition α, x ∈ α iff α(x) = x iff p(x,α) = 1.

The next two sections prove additional properties of the quantity p. On a first reading
the reader is advised to advance to Sect. 8.2. Section 8.1.3 shows that, for any given x and
different α’s, p(x,α) behaves very much as a probability on the propositions. Exactly so,
for propositions that commute as projections. Section 8.1.4 proves an intriguing inequality
that provides a numerical strengthening of the Interference property of [4].
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8.1.3 Similarity as Probability

The following results will show that, for any fixed x ∈ X, the quantities p(x,α) for different
measurements α play the role of a probability on the propositions. For any two proposi-
tions α,β ∈ M we shall define, as traditional since [1], their conjunction α ∧ β as their
intersection α ∩ β (note the intersection of closed subspaces is a closed subspace) and their
disjunction α ∨ β as the topological closure of their linear sum: cl(α + β). Note that these
notations are inconsistent with those of [4] where conjunction and disjunction were defined
only for commuting propositions. We shall demonstrate a particular interest in commuting
propositions. For the sake of obtaining a straightforward definition of commutation, we shall
extend our notation for projections.

Definition 4 Let α,β ∈ M be two propositions. We shall say that α and β commute iff for
any x ∈ X α(β(x)) = β(α(x)).

Lemma 6 Any two propositions α,β ∈ M commute iff there are three pairwise orthogonal
propositions γi, i = 1, . . . ,3 such that α = γ1 ∨ γ2 and β = γ1 ∨ γ3.

Note that one of the propositions γi may be the falsehood ⊥.

Proof The if claim is obvious. The only if claim follows from the fact that projections are
Hermitian and that Hermitian operators commute iff they have a joint basis of eigenvec-
tors. �

Corollary 3 For any α,β ∈ X, if α ⊆ β or α ⊥ β , then α and β commute.

Proof In the first case, take γ1 = α, γ2 = ⊥ and γ3 = ¬α ∧ β . In the second case, take
γ1 = α, γ2 = ⊥ and γ3 = β . �

Corollary 4 For any α,β ∈ X, if α and β commute then ¬α and β commute.

Proof Let α = γ1 ∨ γ2 and β = γ1 ∨ γ3. Then ¬α = ¬γ1 ∧ ¬γ2. Since γ3 ⊆ ¬α, we have,
by the orthomodular property, ¬α = γ3 ∨ ¬γ1 ∧ ¬γ2 ∧ ¬γ3. But β = γ3 ∨ γ2 and γ2 ⊥
¬γ1 ∧ ¬γ2 ∧ ¬γ3. �

First, we shall consider disjunctions of orthogonal propositions.

Lemma 7 If α ⊥ β then, for any x ∈ X, p(x,α ∨ β) = p(x,α) + p(x,β).

Proof Consider any �u �= �0 ∈ x. Now (α ∨ β)(�u) = α(�u) + β(�u) (see [2], Theorem 2, p. 46).
Therefore 〈�u, (α ∨ β)(�u)〉 = 〈�u,α(�u)〉 + 〈�u,β(�u)〉. �

Corollary 5 If αi is a family of pairwise orthogonal measurements, then for any x ∈ X we
have p(x,

∨
i∈I αi) = ∑

i∈I p(x,αi).

Proof By induction on the size of I , and associativity of disjunction. �

The following lemmas are fundamental characteristics of probabilities.
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Lemma 8 For any α ∈ M and any x ∈ X: p(x,α) + p(x,¬α) = 1.

Proof By Lemma 7, p(x,α) + p(x,¬α) = p(x,α ∨ ¬α). But α ∨ ¬α = � and therefore
(α ∨ ¬α)(x) = x and, by Corollary 2, p(x,α ∨ β) = 1. �

Lemma 9 For any α ∈ M and any x ∈ X: 0 ≤ p(x,α) ≤ 1.

Proof By Lemmas 5 and 8. �

Lemma 10 Let α,β ∈ M be any commuting measurements. For any x ∈ X p(x,α ∨ β) =
p(x,α) + p(x,β) − p(x,α ∧ β).

Proof We know that α ∨ β = (α ∧ β) ∨ (α ∧ ¬β) ∨ (¬α ∧ β). The three parts of the dis-
junction above are pairwise orthogonal, therefore Corollary 5 implies that p(x,α ∨ β) =
p(x,α∧β)+p(x,α∧¬β)+p(x,¬α∧β). But, by Lemma 7: p(x,α∧β)+p(x,α∧¬β) =
p(x,α) and p(x,α ∧ β) + p(x,¬α ∧ β) = p(x,β). �

The lemmas above dealt mostly with the properties of disjunction. The next result con-
cerns conjunction and parallels the consideration of conditional probabilities.

Lemma 11 Let α,β ∈ M be any commuting measurements. For any x ∈ X: p(x,α ∧ β) =
p(x,α)p(α(x),β).

Proof Since α ∧ β = α ◦ β , by the definition of p, taking any �u �= �0 ∈ x:

p(x,α ∧ β) = ‖(α ◦ β)(�u)‖2

‖�u‖2
= ‖(α ◦ β)(�u)‖2

‖α(�u)‖2

‖α(�u)‖2

‖�u‖2
= p(α(x),β) p(x,α).

�

Corollary 6 Let α,β ∈ M be any measurements such that α ≤ β . Then for any x ∈ X,
p(x,α) ≤ p(x,β).

Proof If α ≤ β , the two measurements commute and α = β ∧ α. By Lemma 11, then
p(x,α) = p(x,β)p(β(x),α) ≤ p(x,β) by Lemma 9. �

Corollary 7 Let α,β ∈ M be any commuting measurements. Then for any x ∈ X, p(x,β) =
p(x,α)p(α(x),β) + p(x,¬α)p((¬α)(x),β).

Proof Since α and β commute, by Theorem 1 of [4], β = (α ∧ β) ∨ (¬α ∧ β). By Lemma 7
we have: p(x,β) = p(x,α∧β)+p(x,¬α∧β). We conclude, by Lemma 11, that p(x,β) =
p(x,α)p(α(x),β) + p(x,¬α)p((¬α)(x),β). �

In Corollary 7 one cannot omit the requirement that α and β commute. The consideration
of a two-dimensional Euclidean space where α is the x-axis and x makes an angle θ with
the x-axis is sufficient. If β is x, then p(x,β) = 1 whereas p(x,α) = cos2(θ) = p(α(x),β)

and p(x,¬α) = sin2(θ) = p((¬α)(x),β). Also taking β orthogonal to x gives p(x,β) = 0
and p(x,α) = cos2(θ) = p((¬α)(x),β) and p(x,¬α) = sin2(θ) = p(α(x),β). Neverthe-
less the result holds in the following case.
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Lemma 12 For any x ∈ X and any α,β ∈ M such that α(x) ∈ β and (¬α)(x) ∈ β , one has

p(x,β) = p(x,α)p(α(x),β) + p(x,¬α)p((¬α)(x),β) = 1.

Proof By assumption both α(x) and (¬α)(x) are subspaces of β . Given any �u ∈ x, both
α(�u) and (¬α)(�u) are in β . But β is a subspace and therefore α(�u) + (¬α)(�u) = �u ∈ β . �

Lemma 13 For any x ∈ X and any α,β ∈ M such that (α ◦ β)(x) = (β ◦ α)(x), we have
p(x,β) = p(x,α)p(α(x),β) + p(x,¬α)p((¬α)(x),β).

Proof Assume that (α ◦ β)(x) = (β ◦ α)(x). By Lemma 4, (¬α◦β)(x) = (β ◦¬α)(x). Take
any �u �= �0 ∈ x. Then,

p(x,β) = ‖β(�u)‖2/‖�u‖2 = ‖α(β(�u)) + (¬α)(β(�u))‖2/‖�u‖2

= ‖α(β(�u))‖2/‖�u‖2 + ‖(¬α)(β(�u))‖2/‖�u‖2

= ‖β(α(�u))‖2/‖�u‖2 + ‖(β)((¬α)(�u))‖2/‖�u‖2

= ‖β(α(�u))‖2

‖α(x)‖2

‖α(x)‖2

‖�u‖2
+ ‖(β)((¬α)(�u))‖2

‖(¬α)(x)‖2

‖(¬α)(x)‖2

‖�u‖2

= p(α(x),β)p(x,α) + p((¬α)(x),β)p(x,¬α). �

8.1.4 An Inequality

The next result strengthens the Interference property of [4] by presenting a quantitative
version of the principle.

Theorem 2 For any α,β ∈ M and any x ∈ X such that α(x) = x,

p(x,β)(1 − p(β(x),α))2 ≤ p(β(x),α)(1 − p(α(β(x)),β)).

Note that, by Theorem 1, p(x,β) ≤ p(β(x),α) but (1−p(β(x),α)) ≥ (1−p(β(x),α)).
The fact that the quantity 1 − p(β(x),α) appears squared seems inevitable. An examina-
tion of R3 shows that it may be the case that p(x,β)(1 − p(β(x),α)) > p(β(x),α)(1 −
p(α(β(x)),β)).

Proof Assume �t �= �0 ∈ x. Let �u = β(�t), �v = α(�u) and �w = β(�v).
In a first step we want to show that:

‖�u − �v‖2 = 〈�t, �v − �w〉.
Indeed: ‖�u − �v‖2 = 〈�u − �v, �u − �v〉 = 〈�u, �u − �v〉 − 〈�v, �u − �v〉. But the last term is null

since �u − �v is orthogonal to α in general and in particular to �v. We have:

‖�u − �v‖2 = 〈�u, �u − �v〉.
But �t − �u is, similarly, orthogonal to �u and 〈�u, �u〉 = 〈�t, �u〉. Since �u − �v is orthogonal to �t ,
〈�t, �u〉 = 〈�t, �v〉. We have:

‖�u − �v‖2 = 〈�t, �v〉 − 〈�u, �v〉.
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Again, �v − �w is orthogonal to �u and therefore: 〈�u, �v〉 = 〈�u, �w〉 and �t − �u is orthogonal to �w
and we have: 〈�u, �w〉 = 〈�t, �w〉. Therefore:

‖�u − �v‖2 = 〈�t, �v〉 − 〈�t, �w〉 = 〈�t, �v − �w〉.
By Cauchy–Schwarz therefore we have:

‖�u − �v‖2 ≤ ‖�t‖ ‖�v − �w‖
and:

‖�u − �v‖4 ≤ ‖�t‖2 ‖�v − �w‖2.

But: ‖�u‖2 = ‖�v‖2 + ‖�u − �v‖2, and ‖�v‖2 = ‖ �w‖2 + ‖�v − �w‖2. Therefore we have:

(‖�u‖2 − ‖�v‖2)2 ≤ ‖�t‖2 (‖�v‖2 − ‖ �w‖2)

and

‖�u‖2

‖�t‖2

(

1 − ‖�v‖2

‖�u‖2

)2

≤ ‖�v‖2 − ‖ �w‖2

‖�u‖2
,

p(x,β) (1 − p(β(x),α))2 ≤ ‖�v‖2

‖�u‖2

(

1 − ‖ �w‖2

‖�v‖2

)

.

We conclude that:

p(x,β) (1 − p(β(x),α))2 ≤ p(β(x),α) (1 − p(α(β(x)),β)). �

Theorem 2 is a quantitative strengthening of the Interference property of projections in
Hilbert spaces that plays a central role in the definition of an M-algebra [4]. Indeed, assum-
ing that x ∈ α, if α(β(x)) ∈ β , then, by Corollary 2, p(α(β(x)),β) = 1 and by Theorem 2,
either p(x,β) = 0 or p(β(x),α) = 1. In both cases we have p(β(x),α) = 1 and, by Corol-
lary 2, β(x) ∈ α.

8.2 Phases for Triangles: θ(x, y, z)

We may now proceed to the definition of a second geometric quantity relating three states:
θ(x, y, z). This quantity does not seem to have been studied previously.

In Sect. 8.1.1 a quantity was attached to any pair of states. This quantity was the modulus
of some inner product. It seems natural that the argument of a similar inner product repre-
sents another important geometrical quantity. But, clearly some thinking must be done to
define, out of such an argument, a quantity that does not depend on the vectors chosen, but
only on states. A new quantity, θ(x, y, z), an angle in the interval [0,2π] will be attached to
triples of states. This quantity can be defined only if no two of the three states x, y and z are
orthogonal.

Definition 5 Let x, y, z ∈ X be such that x �⊥ y, y �⊥ z and z �⊥ x. We shall define θ(x, y, z)

in the following way. Choose arbitrary unit vectors �u, �v and �w in x, y and z respectively and
let:

θ(x, y, z) = arg(〈�u, �v〉) + arg(〈�v, �w〉) + arg(〈 �w, �u〉).
Note that each of those three inner products is different from zero, by assumption, and

therefore the three complex arguments are well-defined.
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We need to justify the definition by showing that the quantity θ(x, y, z) depends only on
x, y and z and does not depend on the vectors �u, �v and �w. For example, the definition is
independent of the vector �u chosen in x since any unit vector �s of x has the form �s = eiϕ �u
for some ϕ ∈ [0,2π ]. Had we used �s instead of �u we would have obtained:

arg(〈eiϕ �u, �v〉) + arg(〈�v, �w〉) + arg(〈 �w,eiϕ �u〉)
= arg(eiϕ〈�u, �v〉) + arg(〈�v, �w〉) + arg(e−iϕ〈 �w, �u〉)
= ϕ + arg(〈�u, �v〉) + arg(〈�v, �w〉) − ϕ + arg(〈 �w, �u〉).

A similar line shows that the choice of none of �v or �w influences θ(x, y, z).
We shall now prove some properties of θ . First, θ(x, y, z) is invariant under a circular

permutation of the arguments and antisymmetric under transpositions.

Lemma 14 For any generic states x, y and z, we have: θ(y, z, x) = θ(x, y, z), θ(x, z, y) =
−θ(x, y, z) and θ(x, y,w) = θ(x, y, z) + θ(x, z,w) + θ(z, y,w).

Proof Obvious. �

The behavior of θ under (planar) orthogonal complements is also antisymmetric.

Lemma 15 Assume x, y, z ∈ X are states no two of them are equal and no two of them are
orthogonal and such that coplanar(x, y, z). Let x ′ = (¬x)(y) = (¬x)(z), y ′ = (¬y)(z) =
(¬y)(x) and z′ = (¬z)(x) = (¬z)(y). Then θ(x ′, y ′, z′) = −θ(x, y, z).

Proof Choose an arbitrary unit vector �u in x. Let �v be the unit vector of y such that
〈�u, �v〉 > 0. Let �u′ be the unit vector of x ′ such that 〈�v, �u′〉 > 0. Let us have �v = r1 �u + r2 �u′
for positive real numbers ri , i = 1, 2. The vector r2 �u − r1 �u′ is a unit vector in y ′. Let
�v′ = r2 �u − r1 �u′. Let �w be the unit vector of z such that 〈�u, �w〉 > 0. Let �w = r3 �u + r4e

iϕ �u′
for positive ri ’s i = 3,4 and some angle ϕ. Let �w′ = r4e

−iϕ �u − r3 �u′, a unit vector of z′.
We see that:

θ(x, y, z) = arg(〈�u, �v〉) + arg(〈�v, �w〉) + arg(〈 �w, �u〉)
= 0 + arg(〈�v, �w〉) + 0

and

θ(x ′, y ′, z′) = arg(〈�u′, �v′〉) + arg(〈�v′, �w′〉) + arg(〈 �w′, �u′〉)
= π + arg(〈�v′, �w′〉) + π.

We are left to show that arg(〈�v′, �w′〉) = − arg(〈�v, �w〉). In fact, we shall show that 〈�v′, �w′〉 =
〈 �w, �v〉. Indeed, 〈�v′, �w′〉 = r2r4e

iϕ + r1r3 and 〈 �w, �v〉 = r1r3 + r2r4e
iϕ . �

9 Properties of Superpositions

A most remarkable novelty of QM is that the components of a superposition interfere. To
put this in evidence, let us consider p(ry + (1 − r)z, x). One would expect this quantity to
be, essentially, equal to rp(y, x) + (1 − r)p(z, x).
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Lemma 16 If x �⊥ y, y �⊥ z, z �⊥ x, r ∈ [0,1], ω(r, y, z) = 1 + 2
√

r(1 − r)p(y, z) we have,
for any x ∈ X:

p(ry + (1 − r)z, x)

= rp(y, x) + (1 − r)p(z, x) + 2 cos(θ(x, y, z))
√

r(1 − r)p(y, x)p(z, x)

ω(r, y, z)
.

We see that, indeed, p(ry + (1 − r)z, x) is almost equal to rp(y, x) + (1 − r)p(z, x).
But there are two correction terms. The term 2 cos(θ(x, y, z))

√
r(1 − r)p(y, x)p(z, x) is

an interference term, a characteristic of QM. The denominator ω(r, y, z) is a normalization
factor. Note that the interference term contains cos(θ(x, y, z)), not sin(θ(x, y, z)). Even if
all angles θ are equal to zero, which is the case in a Euclidean space, the term is non-zero.

Proof Let �v and �w be unit vectors of y and z respectively with 〈�v, �w〉 > 0. Let �u = √
r �v +√

1 − r �w. We have 〈�v, �w〉 = 〈 �w, �v〉 = |〈�v, �w〉| = √
p(y, z) and

| �u |2 = 〈√r �v + √
1 − r �w,

√
r �v + √

1 − r �w〉
= r + 2

√
r(1 − r)

√
p(y, z) + (1 − r)

= ω(r, y, z).

Let now �t be the unit vector of x such that 〈�t, �v〉 > 0. We have: θ(x, y, z) = 0 + 0 +
arg(〈 �w, �t〉). Therefore 〈 �w, �t〉 = √

p(x, z)eiθ(x,y,z) and

〈√r �v + √
1 − r �w, �t〉 = √

r
√

p(y, x) + √
1 − r

√
p(z, x)

× (cos(θ(x, y, z)) + i sin(θ(x, y, z))).

Therefore

|〈√r �v + √
1 − r �w, �u〉|2 = (rp(x, y) + (1 − r)p(x, z) cos2(θ(x, y, z))

+ 2
√

r(1 − r)p(x, y)p(x, z) cos(θ(x, y, z))

+ (1 − r)p(x, z) sin2(θ(x, y, z)).

�

Lemma 17 If y �⊥ z, r ∈ [0,1], and x = ry + (1 − r)z then:

1. coplanar(x, y, z),
2. θ(x, y, z) = 0,
3. p(x, y) = 1 − (1 − r)(1 − p(y, z))/(1 + 2

√
r(1 − r)p(y, z)), and

4. for any 0 < r ≤ 1, we have p(ry + (1 − r)z, y) > p(y, z).

Proof Let x = ry + (1 − r)y and �u = √
r �v + √

1 − r �w. Immediately, by Definition 2,
coplanar(x, y, z). Since 〈�v, �w〉 > 0, we have 〈�u, �v〉 > 0 and also 〈�u, �w〉 > 0. We conclude
that θ(x, y, z) = 0. For 3 the value of p(x, y) is straightforward from Lemma 16. From the
same Lemma,
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p(ry + (1 − r)z, y)

= r + (1 − r)p(y, z) + 2
√

r(1 − r)p(y, z)

1 + 2
√

r(1 − r)p(y, z)

>
rp(y, z) + (1 − r)p(y, z) + 2p(y, z)

√
r(1 − r)p(y, z)

1 + 2
√

r(1 − r)p(y, z)

= p(y, z).

�

Corollary 8 If x, x ′, y and z are coplanar states with x ⊥ x ′, one has:

cos(θ(x ′, y, z)) =
√

p(y, z) − cos(θ(x, y, z))
√

p(x, y)p(x, z)√
(1 − p(x, y))(1 − p(x, z))

.

Proof We have: p(ry + (1 − r)z, x) + p(ry + (1 − r)z, x ′) = 1. By Lemma 16:

p(ry + (1 − r)z, x)

= rp(x, y) + (1 − r)p(x, z) + 2 cos(θ(x, y, z))
√

r(1 − r)p(x, y)p(x, z)

1 + 2
√

r(1 − r)p(y, z)

and

p(ry + (1 − r)z, x ′)

= r(1 − p(x, y)) + (1 − r)(1 − p(x, z))

1 + 2
√

r(1 − r)p(y, z)

+ 2 cos(θ(x ′, y, z))
√

r(1 − r)(1 − p(x, y))(1 − p(x, z))

1 + 2
√

r(1 − r)p(y, z)
.

Therefore

1 + 2
√

r(1 − r)p(y, z)

= r + (1 − r) + 2 cos(θ(x, y, z))
√

r(1 − r)p(x, y)p(x, z)

+ 2 cos(θ(x ′, y, z))
√

r(1 − r)(1 − p(x, y))(1 − p(x, z))

and

√
r(1 − r)p(y, z)

= cos(θ(x, y, z))
√

r(1 − r)p(x, y)p(x, z)

+ cos(θ(x ′, y, z))
√

r(1 − r)(1 − p(x, y))(1 − p(x, z)). �

In parallel with Lemma 16, one would like to express θ(ry + (1 − r)z, x1, x2) in terms
of r and the p’s and θ ’s of y, z, x1 and x2, for coplanar states. The formula obtained (by
considering some orthonormal basis for the two dimensional subspace) is, unfortunately, not
very appealing and shall not be presented here.
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10 Mappings that Preserve Superpositions

It is a thesis of this paper that the structure of superpositions is the fundamental structure of
Hilbert spaces that is meaningful for Quantum Physics. To support this thesis one should,
now, analyze the fundamental constructions used in Quantum Physics, such as tensor prod-
ucts and quotients as universal, i.e., categorical constructions in the category of superposi-
tion preserving mappings. Such an analysis has not been performed yet. Some first reflec-
tions on tensor products may be found in Sect. 11.

A preliminary step must be the proper definition of the category of superposition struc-
tures and their superposition preserving mappings. This paper does not provide for a proper
definition of such a category, whose objects must include both structures defined by Hilbert
spaces, studied here, and classical structures in which any two distinct states are orthogonal,
and all structures in-between. We shall, therefore, consider only superposition structures de-
fined by some Hilbert space. A more general definition abstracting from Hilbert spaces and
based on the properties of the quantities p and θ is left for future work.

Let H be a Hilbert space on the complex field, and X be the set of all one-dimensional
subspaces of H. With any triple y, z ∈ X, r ∈ [0,1] such that y �⊥ z, we can associate
the superposition ry + (1 − r)z. A function f : X1 −→ X2 between two such sets of one-
dimensional subspaces X1 and X2 preserves superpositions iff for any y, z ∈ X1, such that
y �⊥ z and for any r ∈ [0,1] the superposition, in X2, rf (y) + (1 − r)f (z) is defined, i.e.,
f (y) �⊥ f (z) and is equal to f (ry + (1 − r)z).

Note that if f : X1 → X2 preserves superpositions and x �⊥ y then f (x) �⊥ f (y) since the
superpositions rf (x) + (1 − r)f (y) must be defined.

We shall now present some preliminary results concerning mappings that preserve su-
perpositions. First, note that if H2 is a one-dimensional Hilbert space, then X2 contains one
element only and, for any X1, the unique mapping X1 → X2 preserves superpositions. Such
a mapping does not preserve p or θ .

A natural way to obtain a mapping f : X1 → X2 is to start from a linear map
m : H1 → H2. Such a map m associates, with every one-dimensional subspace of H1, i.e.,
every member of X1, a subspace of H2 that is either one-dimensional or zero-dimensional.
Any injective, i.e., left-invertible, linear map m defines an application m : X1 → X2 defined
by: m(x) is the image m(x) of the subspace x.

Definition 6 A mapping obtained from an injective linear mapping between Hilbert spaces
in the way described just above will be called regular. If such a map m : H1 → H2 is a linear
isometry, i.e., a unitary map of H1 onto its image, we shall say that the mapping m is an
isometry.

Note that the mappings preserving superpositions described just above that map into a
singleton are not regular unless H1 is also of dimension one. Note also that if m : H1 → H2

is an injective linear map, then, for any complex number c different from zero, the map cm

is an injective linear map H1 → H2 and that cm = m : X1 → X2.
We shall now characterize the regular mappings that preserve superpositions. First, a

well-known result from the theory of Hilbert spaces.

Theorem 3 Let H1,H2 be Hilbert spaces. If f : H1 → H2 is a linear isometry, i.e.,
‖f (�u)‖ = ‖�u‖ for every �u ∈ H1 then it preserves inner products: 〈f (�u),f (�v)〉 = 〈�u, �v〉 for
every �u, �v ∈ H1.
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We now move to prove that if m is any regular mapping that preserves superpositions,
then m is an isometry.

Lemma 18 Let H1 and H2 be Hilbert spaces and let X1 and X2 be the one-dimensional
subspaces of H1 and H2 respectively. Assume m : H1 → H2 is an injective linear mapping
and that m : X1 → X2 preserves superpositions. Then there is a strictly positive real constant
c such that, for every �u ∈ H1, one has ‖m(�u)‖ = c‖�u‖, and m is an isometry.

Proof Notice first that, if ‖m(�u)‖ = c‖�u‖ for every �u ∈ H1, then, if we define n = m/c the
mapping n is a linear isometry and one has m = n, proving that m is an isometry.

Let m be linear and assume m preserves superpositions. Let x, y ∈ X1 be one-
dimensional subspaces of H1. It is enough to show that there are unit vectors �u, �v in x

and y respectively such that ‖m(�u)‖ = ‖m(�v)‖.
If x = y the result follows from the linearity of m. We may therefore assume that x �= y.
Suppose, first, that x �⊥ y and let r ∈]0,1[. There are unit vectors �u ∈ x, �v ∈ y, �t ∈ m(x)

and �w ∈ m(y) such that 〈�u, �v〉 > 0 and 〈�t, �w〉 > 0. Note that m(x) �= m(y) since m is injec-
tive. The vector

√
r �u + √

1 − r �v is a vector of the superposition rx + (1 − r)y. The vector√
r�t + √

1 − r �w is a vector of the superposition rm(x) + (1 − r)m(y) = m(rx + (1 − r)y)

since m preserves superpositions. Since m is linear the vector
√

rm(�u) + √
1 − rm(�v)

is a vector of m(rx + (1 − r)y). We conclude that both vectors
√

r�t + √
1 − r �w and√

rm(�u) + √
1 − rm(�v) are members of the same one-dimensional subspace. This implies

that m(�u) = d�t and m(�v) = d �w for some complex number d and ‖m(�u)‖ = ‖m(�v)‖ = |d|.
Let us now assume that x ⊥ y. We can find some z ∈ X1 such that z �= x, z �= y,

coplanar(z, x, y). Since z �⊥ x, by the above we can find unit vectors �u, �w in x and z re-
spectively such that ‖m(�u)‖ = ‖m( �w)‖. Similarly, we can find unit vectors �v, �w′ in y and z

respectively such that ‖m(�v)‖ = ‖m( �w′)‖. But ‖m( �w′)‖ = ‖m( �w)‖. �

We shall show now that any isometry preserves superpositions.

Lemma 19 Let m : H1 → H2 be a linear isometry. Then m preserves p, θ and superposi-
tions.

Proof By Theorem 3, f preserves inner products and therefore preserves orthogonality, p

and θ .
Assume now that x �⊥ y and z = rx + (1 − r)y. We have m(x) �⊥ m(y) and therefore the

superposition rm(x) + (1 − r)m(y) is defined.
If �u, �v are unit vectors of x and y respectively, such that 〈�u, �v〉 > 0 then m(�u),m(�v)

are unit vectors of m(x),m(y) respectively such that 〈m(�u),m(�v)〉 > 0 and therefore
rm(x) + (1 − r)m(y) is the one-dimensional subspace generated by

√
rm(�u) +√

1 − rm(�v) = m(
√

r �u + √
1 − r �v) which is m(rx + (1 − r)y). �

We can now characterize regular mappings that preserve superpositions.

Theorem 4 Let m : H1 → H2 be any linear injective mapping. The function m : X1 → X2

preserves superpositions iff it is an isometry.

Proof The if part is Lemma 19. The only if part is Lemma 18. �
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11 Conclusion and Future Work

We have shown that the properties of superpositions are governed by two geometrical quan-
tities p and θ defined, respectively for pairs and triples of one-dimensional subspaces in a
Hilbert space, thus moving forward John von Neumann’s program of focusing on subspaces
and not on vectors.

The most pressing task is probably now to provide an abstract definition of structures ad-
mitting a superposition operation, generalizing those structures provided by Hilbert spaces.

A quantic system composed of two sub-systems is represented by the tensor product of
the Hilbert spaces representing the two sub-systems. Product states of the form x1 ⊗ x2 are
elements of this tensor product. On such product states, the quantities p and θ are easily
analyzed: we have

p(x1 ⊗ x2, y1 ⊗ y2) = p(x1, y1)p(x2, y2)

and

θ(x1 ⊗ x2, y1 ⊗ y2, z1 ⊗ z2) = θ(x1, y1, z1) + θ(x2, y2, z2).

The tensor product can be characterized as the closure of the set of product states under
superpositions (in our sense) and the operation of taking the state orthogonal to a given state
in a given two-dimensional plane.

Extending this definition to superpositions of product states in accordance with the prop-
erties of p and θ on superpositions provides a superposition structure that is a original
presentation of the tensor product and may be found useful to study symmetry properties.
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